第二节 空间几何体的表面积与体积
考点一 空间几何体的表面积
1.(2015·新课标全国Ⅰ,11) 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )
A.1 B.2
C.4 D.8
解析 由题意知,2r·2r+·2πr·2r+πr2+πr2+·4πr2=4r2+5πr2=16+20π,∴r=2.
答案 B
2.(2015·新课标全国Ⅱ,10)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为( )
A.36π B.64π C.144π D.256π
解析 如图, 要使三棱锥OABC即COAB的体积最大,当且仅当点C到平面OAB的距离,即三棱锥COAB底面OAB上的高最大,其最大值为球O的半径R,则VOABC最大=VCOAB最大=×S△OAB×R=××R2×R=R3=36,所以R=6,得S球O=4πR2=4π×62=144π.选C.
答案 C
3.(2015·安徽,9)一个四面体的三视图如图所示,则该四面体的表面积是( )