电磁感应中的动力学和能量问题
1.如图1所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A、B为该磁场的竖直边界。若不计空气阻力,则( )
图1
A.圆环向右穿过磁场后,还能摆至原来的高度
B.在进入和离开磁场时,圆环中均有感应电流
C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大
D.圆环最终将静止在平衡位置
解析:选B 如题图所示,当圆环从1位置开始下落,进入和摆出磁场时(即2和3位置),由于圆环内磁通量发生变化,所以有感应电流产生。同时,金属圆环本身有内阻,必然有能量的转化,即有能量的损失。因此圆环不会摆到4位置。随着圆环进出磁场,其能量逐渐减少,圆环摆动的振幅越来越小。当圆环只在匀强磁场中摆动时,圆环内无磁通量的变化,无感应电流产生,无机械能向电能的转化。题意中不存在空气阻力,摆线的拉力垂直于圆环的速度方向,拉力对圆环不做功,所以系统的能量守恒,所以圆环最终将在A、B间来回摆动。B正确。
2.(多选)如图2所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B。一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则( )
图2
A.如果B变大,vm将变大
B.如果α变大,vm将变大
C.如果R变大,vm将变大
D.如果m变小,vm将变大
解析:选BC 金属杆从轨道上滑下切割磁感线产生感应电动势E=Blv,在闭合电路中形成电流I=,因此金属杆从轨道上滑下的过程中除受重力、轨道的弹力外还受安培力F作用,F=BIl=,先用右手定则判定感应电流方向,再用左手定则判定出安培力方向,如图所示,根据牛顿第二定律,得mgsin α-=ma,当a→0时,v→vm,解得vm=,故选项B、C正确。
3.如图3所示,质量为m的金属环用线悬挂起来,金属环有一半处于水平且与环面垂直的匀强磁场中,从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线拉力大小的下列说法中正确的是( )
图3
A.大于环重力mg,并逐渐减小
B.始终等于环重力mg
C.小于环重力mg,并保持恒定
D.大于环重力mg,并保持恒定
解析:选A 根据楞次定律知圆环中感应电流方向为顺时针,再由左手定则判断可知圆环所受安培力竖直向下,对圆环受力分析,根据受力平衡有FT=mg+F,得FT>mg,F=BIL,根据法拉第电磁感应定律I===S可知I为恒定电流,联立上式可知B减小,推知F减小,则由FT=mg+F知FT减小。选项A正确。
4.(多选)如图4所示,水平放置的光滑平行金属导轨上有一质量m的金属棒ab。导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动。则( )
图4
A.随着ab运动速度的增大,其加速度也增大
B.外力F对ab做的功等于电路中产生的电能
C.当ab做匀速运动时,外力F做功的功率等于电路中的电功率
D.无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能
解析:选CD 金属棒ab在一水平恒力F作用下由静止开始向右运动,对金属棒ab受力分析有F-=ma,可知随着ab运动速度的增大,其加速度逐渐减小,选项A错误;外力F对ab做的功等于电路中产生的电能加上金属棒ab增加的动能,选项B错误;当ab做匀速运动时,F=F安=,外力F做功的功率等于电路中的电功率,选项C正确;无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能,选项D正确。