一抓基础,多练小题做到眼疾手快
1.(2019·徐州调研)已知f(n)=1+++…+(n∈N*),经计算得f(4)>2,f(8)>,f(16)>3,f(32)>,则对于任意n(n∈N*)有不等式________成立.
解析:观察已知中的等式:
f(2)=,f(4)>2,f(8)>,
f(16)>3,f(32)>,…,
则f(2n)≥.
答案:f(2n)≥
2.设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论我们可以得到的一个真命题为:设等比数列{bn}的前n项积为Tn,则____________________成等比数列.
解析:利用类比推理把等差数列中的差换成商即可.
答案:T4,,,
3.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;