第三节 动量守恒定律在碰撞中的应用
[学习目标] 1.知道弹性碰撞的概念和特点.2.知道非弹性碰撞和完全非弹性碰撞的概念和特点.3.会用动量守恒定律和能量守恒观点分析一维碰撞问题.(重点、难点)4.知道动量守恒定律的普遍意义.
一、应用
动量守恒定律是物理学中最常用的定律之一.迄今为止,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们都会提出新的假设以坚持动量守恒定律的正确性,最终的结果,往往是因为有新的发现而胜利告终.
二、应用动量守恒定律解题的一般步骤
(1)确定研究对象组成的系统,分析所研究的物理过程中,系统受外力的情况是否满足动量守恒定律的应用条件.
(2)设定正方向,分别写出系统初、末状态的总动量.
(3)根据动量守恒定律列方程.
(4)解方程、统一单位后代入数值进行运算,求出结果.
1.正误判断(正确的打“√”,错误的打“×”)
(1)动量守恒定律是物理学中最常用的定律之一,在理论探索和实际应用中均发挥了巨大作用. (√)
(2)在碰撞类问题中,相互作用力往往是变力,很难用牛顿运动定律求解.
(√)
(3)应用动量守恒定律解题只需考虑过程的初、末状态,不必涉及过程的细节. (√)
(4)两个物体发生正碰时,碰撞过程系统动量守恒,机械能也守恒.(×)
2.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统 ( )
A.动量守恒,机械能守恒
B.动量守恒,机械能不守恒
C.动量不守恒,机械能守恒
D.无法判定动量、机械能是否守恒
B [在子弹打击木块A及弹簧压缩的过程中,对子弹、两木块和弹簧组成的系统,系统所受的外力之和为零,则系统的动量守恒.在此过程中,有摩擦力做功,所以系统机械能不守恒.故B正确,A、C、D错误.]
3.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定水平向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s.则( )
A.左方是A球,碰撞后A、B两球速度大小之比为2∶5
B.左方是A球,碰撞后A、B两球速度大小之比为1∶10
C.右方是A球,碰撞后A、B两球速度大小之比为2∶5
D.右方是A球,碰撞后A、B两球速度大小之比为1∶10