1.正弦定理及其变形
(1)定理内容:
===2R(R为外接圆半径).
(2)正弦定理的常见变形:
①sin A∶sin B∶sin C=a∶b∶c;
②====2R;
③a=2Rsin_A,b=2Rsin_B,c=2Rsin_C;
④sin A=,sin B=,sin C=.
思考1:在△ABC中,已知acos B=bcos A.你能把其中的边a,b化为用角表示吗(打算怎么用上述条件)?
[提示] 可借助正弦定理把边化成角:2Rsin Acos B=2Rsin Bcos A,移项后就是一个三角恒等变换公式sin Acos B-cos Asin B=0.
2.对三角形解的个数的判断
已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定,现以已知a,b和A解三角形为例说明
|
图形
|
关系式
|
解的个数
|
A为锐角
|
|
①a=bsin A;
②a≥b
|
一解
|