广东省茂名市五校2019届高三4月联考试题(语文 解析版)
下载扣金币方式
提示:本自然月内重复下载不再扣除金币
-
资源子类联考试卷
-
教材版本不限
-
适用年级高三年级
适用地区全国通用
-
文件大小1042
K
上传用户b-box
-
更新时间2020/5/16 14:46:56
下载统计今日0
总计3
- 评论发表评论 报错(0)我要报错 收藏
-
资源简介
一、现代文阅读(36分
(一)论述类文本阅读(本题共3小题9分)
阅读下面的文字,完成各题。
当前,人工智能的计算力、识别力快速发展,但想象力、创造力仍有不足。为破解这一局限,科学家设计出一套类似“猫鼠游戏”的技术,让人工智能在自动学习中变得更“聪明”。这种技术被称为“对抗性神经网络”技术,美国《麻省理工学院技术评论》日前将其评为2018年“全球十大突破性技术”之一。
人工智能的识别能力有赖于海量样本学习,比如给它“看”数以百万计的鸟类图片,它才能“学会”辨认鸟类,而生成逼真的鸟类图像则更难。其局限性在于,有些事物缺乏海量样本,而且这种学习还依赖人类的“灌输”,缺少自主性。这限制了人工智能的发展,特别是向想象力、创造力这种更高层次的进阶。
美国人伊恩?古德费洛2014年在加拿大蒙特利尔大学读博士时想出一套设计方案:用两个神经网络,进行数字版的“猫鼠游戏”——一个负责“造假”,一个负责“验真”,从而在对抗中不断提高。
负责“造假”的神经网络称为“生成网络”,它依据所“见过”的图片来生成新图片,这需要它总结规律、发挥想象力和创造力;负责“验真”的神经网络称为“判别网络”,它需要凭训练累积的“经验”,来判断某张图片是真实事物,还是生成网络“自创”的“假货”。
“生成网络”并非一开始就足够“聪明”,比如它可能“认为”鸟类会有3条腿,这样的“假货”当然很容易被发现。但随着机器学习的深入和反复对抗练习,生成网络对事物的理解越发深