1.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为( )
A.x-2y+4=0 B.2x+y-7=0
C.x-2y+3=0 D.x-2y+5=0
答案 A
解析 由题意可设所求直线方程为x-2y+m=0,将A(2,3)代入上式得2-2×3+m=0,即m=4,所以所求直线方程为x-2y+4=0.故选A.
2.已知直线l1:ax+2y+1=0与直线l2:(3-a)x-y+a=0,若l1∥l2,则a的值为( )
A.1 B.2
C.6 D.1或2
答案 C
解析 ∵直线l1:ax+2y+1=0与直线l2:(3-a)x-y+a=0的斜率都存在,且l1∥l2,∴k1=k2,即-=3-a,解得a=6.故选C.