1.函数y=(x+1)2(x-1)在x=1处的导数等于( )
A.1 B.2
C.3 D.4
解析:选D.y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′
=2(x+1)(x-1)+(x+1)2
=3x2+2x-1,
所以y′|x=1=4.
2.函数y=cos(-x)的导数是( )
A.cos x B.-cos x
C.-sin x D.sin x
解析:选C.法一:[cos(-x)]′=-sin(-x)·(-x)′
=sin(-x)=-sin x.
法二:y=cos(-x)=cos x,
所以[cos(-x)]′=(cos x)′=-sin x.