一、选择题
1.直线y=x-和圆x2+y2-4x+2y-20=0( A )
A.相交且过圆心 B.相交但不过圆心
C.相离 D.相切
解析:将圆的方程配方,得(x-2)2+(y+1)2=25,圆心为(2,-1),半径r=5,将(2,-1)代入y=x-中,得×2-=-1,故直线过圆心,与圆相交,故选A.
2.圆x2+y2=4与圆(x-3)2+(y-4)2=49的位置关系为( A )
A.内切 B.相交
C.外切 D.相离
解析:圆x2+y2=4的圆心为(0,0),半径为2,圆(x-3)2+(y-4)2=49的圆心为(3,4),半径为7,圆心距为=5=7-2(等于两圆半径的差),∴圆x2+y2=4与圆(x-3)2+(y-4)2=49的位置关系是内切,故选A.