用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 学案 >> 数学学案
高中数学编辑
2020_2021学年高中数学第二章解析几何初步2.2圆与圆的方程2.2.2圆的一般方程学案含解析北师大版必修2
下载扣金币方式下载扣金币方式
需消耗1金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别学案
    资源子类同步学案
  • 教材版本北师大版(现行教材)
    所属学科高中数学
  • 适用年级高一年级
    适用地区全国通用
  • 文件大小1278 K
    上传用户goldfisher
  • 更新时间2021/1/21 15:09:59
    下载统计今日0 总计1
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
2.2 圆的一般方程
知识点一  圆的一般方程
[填一填]
1圆的一般方程的定义
D2E24F>0时,二元二次方程x2y2DxEyF0才表示一个圆,这时这个方程叫作圆的一般方程.
2方程x2y2DxEyF0表示的图形
[答一答]
1形如x2y2DxEyF0的二元二次方程都表示圆吗?
提示:不是,只有D2E24F>0时才表示圆.
2.圆的标准方程和一般方程各有什么特点?二者怎样互化?
提示:(1)圆的标准方程明确地表达了圆的几何要素,即圆心坐标和半径长.
(2)圆的一般方程表现出明显的代数结构形式,圆心和半径长需要代数运算才能得出.
(3)二者可以互化:将圆的标准方程展开成二元二次方程的形式即得一般方程,将圆的一般方程配方即得标准方程.
3.已知P(x0y0),圆的方程x2y2DxEyF0,如果xyDx0Ey0F<0,那么点P一定在圆内吗?
提示:一定在圆内.圆的方程化为标准方程得(x)2(y)2,由上节标准方程知点P在圆内(x0)2(y0)2<xyDx0Ey0F<0.
知识点二  动点的轨迹方程
[填一填]
在直角坐标平面上,一个动点按照某种规律运动,所形成的曲线称为这个动点的轨迹,曲线的方程称为动点的轨迹方程.
求轨迹方程的一般步骤为:
(1)建系:建立适当的平面直角坐标系;
(2)设点:用(xy)表示动点的坐标,该点是轨迹(曲线)上任意一点;
(3)列式:列出关于xy的方程;
(4)化简:化方程为最简形式;
(5)证明:证明以化简后方程的解为坐标的点都是曲线上的点.
说明:因为除个别情况外,化简过程都是同解变形过程,所以步骤(5)可以省略不写,如果有特殊情况,可适当予以说明.
  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册