(1)观察函数f(x)=x3-2x的图象.
f′(-)的值是多少?在x=-左、右两侧的f′(x)有什么变化?
f′()的值是多少,在x=左、右两侧的f′(x)又有什么变化?
提示:f′(-)=0,在x=-的左侧f′(x)>0,在x=-的右侧f′(x)<0;f′()=0,在x=的左侧f′(x)<0,在x=的右侧f′(x)>0.
(2)如图,函数f(x)在a,b点的函数值与它附近的函数值有什么关系?
y=f(x)在a,b点的导数值是多少?在a,b附近,y=f(x)的导数的符号是什么?
提示:可以发现,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0.
知识梳理 极值点与极值的概念
(1)极小值点与极小值
如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)极大值点与极大值
如(1)中图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧f′(x)>0,右侧f′(x)<0,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.