高考中数列和不等式证明的交叉
数列和不等式是高考的两大热点也是难点,数列是高中数学中一个重要的内容,在高等数学也有很重要的地位,不等式是高中数学培养学生思维能力的一个突出的内容,它可以体现数学思维中的很多方法,当两者结合在一起的时候,问题会变得非常的灵活。所以在复习时,我们在分别复习好两类知识的同时,一定要注意它们的相互渗透和交叉,培养灵活的思维能力。
数列和证明不等式的交叉,是这两大块知识的主要交叉点,它在数列的特殊情景下,巧妙的融合了不等式的证明,它所涉及的问题往往是灵活的应用了数列和不等式的知识,把这两者完美的结合在了一起。
例1 设和分别是等差数列和等比数列,且,,若,试比较和的大小。
分析:这两个通项大小的比较,它们的未知量比较多,比容易直接完成。因通过它们的项数把他们组合在一起。设的公差为,的公比为。
显然,因为,所以有,,即。