某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?
由题意9人中既会英语又会日语的“多面手”有1人.则可分三类:
第一类:“多面手”去参加英语时,选出只会日语的一人即可,有2种选法.
第二类:“多面手”去参加日语时,选出只会英语的一人即可,有6种选法.
第三类:“多面手”既不参加英语又不参加日语,则需从只会日语和只会英语中各选一人,有2×6=12(种)方法.
故共有2+6+12=20(种)选法.
选(抽)取与分配问题的常见类型及其解法
(1)当涉及对象数目不大时,一般选用枚举法、树形图法、框图法或者图表法.
(2)当涉及对象数目很大时,一般有两种方法:
①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若按对象特征抽取的,则按分类进行.
②间接法:去掉限制条件计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.
1.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.
解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有3×5=15种选法;
第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有3×2=6种选法;
第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有5×2=10种选法.
综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法.
答案:31
2.图书馆有8本不同的有关励志教育的书,任选3本分给3个同学,每人1本,有________种不同的分法.
解析:分三步进行:第一步,先分给第一个同学,从8本书中选一本,共有8种方法;第二步,再分给第二个同学,从剩下的7本中任选1本,共有7种方法;第三步,分给第三个同学,从剩下的6本中任选1本,共有6种方法.所以不同分法有8×7×6=336种.
答案:336
用0,1,2,3,4五个数字,
(1)可以排出多少个三位数字的电话号码?
(2)可以排成多少个三位数?
(3)可以排成多少个能被2整除的无重复数字的三位数?
(1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种).