预习课本P64~67,思考并完成以下问题
1.离散型随机变量的方差及标准差的定义是什么?
2.方差具有哪些性质?
3.两点分布与二项分布的方差分别是什么?
1.离散型随机变量的方差
(1)设离散型随机变量X的分布列为
X
|
x1
|
x2
|
…
|
xi
|
…
|
xn
|
P
|
p1
|
p2
|
…
|
pi
|
…
|
pn
|
则称D(X)=(xi-E(X))2pi为随机变量X的方差,其算术平方根为随机变量X的标准差.
(2)随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.
2.几个常见的结论
(1)D(aX+b)=a2D(X).
(2)若X服从两点分布,则D(X)=p(1-p).
(3)若X~B(n,p),则D(X)=np(1-p).