预习课本P22~26,思考并完成下列问题
(1)函数的单调性与导数的正负有什么关系?
(2)利用导数判断函数单调性的步骤是什么?
(3)怎样求函数的单调区间?
1.函数的单调性与其导数正负的关系
在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减;如果恒有f′(x)=0,那么函数y=f(x)在这个区间内是常数函数.
对函数的单调性与其导数正负的关系的两点说明
(1)若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).
(2)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为0.
2.函数图象的变化趋势与导数值大小的关系
如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化的快,其图象比较陡峭.即|f′(x)|越大,则函数f(x)的切线的斜率越大,函数f(x)的变化率就越大.
1.判断(正确的打“√”,错误的打“×”)
(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.( )
(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.( )
(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )
答案:(1)× (2)× (3)√
2.函数f(x)=(x-3)ex的单调递增区间是( )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)