预习课本P29~31,思考并完成下列问题
(1)什么是函数的最值?函数在闭区间上取得最值的条件是什么?
(2)函数的最值与极值有什么关系?
(3)求函数最值的方法和步骤是什么?
1.函数y=f(x)在闭区间上取得最值的条件
如果在区间上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
对函数最值的三点说明
(1)闭区间上的连续函数一定有最值,开区间内的连续函数不一定有最值. 若有唯一的极值,则此极值必是函数的最值.
(2)函数的最大值和最小值是一个整体性概念.
(3)函数y=f(x)在上连续,是函数y=f(x)在上有最大值或最小值的充分而非必要条件.
2.求函数y=f(x)在上的最大值与最小值的步骤
(1)求函数y=f(x)在(a,_b)内的极值.
(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
函数极值与最值的关系
(1)函数的极值是函数在某一点附近的局部概念,函数的最大值和最小值是一个整体性概念.
(2)函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个.
(3)极值只能在区间内取得,最值则可以在端点处取得.有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值不在端点处取得时必定是极值.
1.判断(正确的打“√”,错误的打“×”)
(1)函数的最大值一定是函数的极大值.( )
(2)开区间上的单调连续函数无最值.( )