(1)直角三角形中的边角之间有什么关系?
(2)正弦定理的内容是什么?利用它可以解哪两类三角形?
(3)解三角形的含义是什么?
1.正弦定理
在一个三角形中,各边和它所对角的正弦的比相等,即==.
正弦定理的特点
(1)适用范围:正弦定理对任意的三角形都成立.
(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.
(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.
2.解三角形
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)正弦定理适用于任意三角形( )
(2)在△ABC中,等式bsin A=asin B总能成立( )
(3)在△ABC中,已知a,b,A,则此三角形有唯一解( )
解析:(1)正确.正弦定理适用于任意三角形.
(2)正确.由正弦定理知=,即bsin A=asin B.
(3)错误.在△ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定.
答案:(1)√ (2)√ (3)×