一元二次不等式和一元二次方程、一元二次函数三者构成一个统一的整体.贯穿于高中数学的始终,更是高考的重点内容,在考题中有时单独对某类不等式的解法进行考查,一般以小题形式出现,难度不大,但有时在解答题中与其它知识联系在一起,难度较大.
解一元二次不等式需熟悉一元二次方程、二次函数和一元二次不等式三者之间的关系,其中二次函数的零点是联系这三个“二次”的枢纽.
(1)确定ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)在判别式Δ>0时解集的结构是关键.在未确定a的取值情况下,应先分a=0和a≠0两种情况进行讨论.
(2)若给出了一元二次不等式的解集,则可知二次项系数a的符号和方程ax2+bx+c=0的两个根,再由根与系数的关系就可知a,b,c之间的关系.
(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.
(1)已知不等式ax2+bx+2>0的解集为{x|-1<x<2},则不等式2x2+bx+a<0的解集为( )
A. B.
C.{x|-2<x<1} D.{x|x<-2或x>1}
(2)解关于x的不等式ax2-2ax+a+3>0.
(1)由题意知x=-1,x=2是方程ax2+bx+2=0的根.由根与系数的关系得⇒
∴不等式2x2+bx+a<0,即2x2+x-1<0.
解得-1<x<.
A
(2)解:当a=0时,解集为R;
当a>0时,Δ=-12a<0,∴解集为R;
当a<0时,Δ=-12a>0,方程ax2-2ax+a+3=0的两根分别为,,
∴此时不等式的解集为.