二、教学目标:.
1. 经历数的概念的发展和数系扩充的过程,体会数学发展和创造的过程,以及数学发生、发展的客观需求。
2.理解复数的基本概念以及复数相等的充要条件。
三、课前预习
1. 思考:N、Z、Q、R分别代表什么?它们是如何发展得来的?
2.判断下列方程在实数集中的解的个数(引导学生回顾根的个数与 的关系):
(1) (2) (3) (4)
四、讲解新课
1、新课引人:
数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N
随着生产和科学的发展,数的概念也得到发展
为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然N Q.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有Z Q、N Z.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集