1.绝对值三角不等式
定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
2.绝对值不等式的解法
(1)含绝对值的不等式|x|<a与|x|>a的解集
不等式
|
a>0
|
a=0
|
a<0
|
|x|<a
|
{x|-a<x<a}
|
∅
|
∅
|
|x|>a
|
{x|x>a或x<-a}
|
{x|x∈R且x≠0}
|
R
|
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c⇔-c≤ax+b≤c;
②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.
3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.
法二:利用“零点分区法”求解,体现了分类讨论的思想.
法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.