基本不等式的一个主要功能就是求两个正变量和与积的最值,即所谓“和定积最大,积定和最小”.但有的题目需要利用基本不等式的变形式求最值,有的需要对待求式作适当变形后才可求最值.常见的变形技巧有以下几种:
加上一个数或减去一个数使和或积为定值
函数f(x)=+x(x<3)的最大值是( )
A.-4 B.1
C.5 D.-1
【解析】 因为x<3,所以3-x>0,所以f(x)=-+3≤-2+3=-1.当且仅当=3-x,即x=1时等号成立,所以f(x)的最大值是-1.
【答案】 D
平方后再使用基本不等式
一般地,含有根式的最值问题,首先考虑平方后求最值.
若x>0,y>0,且2x2+=8,求x的最大值.
由于已知条件式中有关x,y的式子均为平方式,而所求式中x是一次的,且根号下y是二次的,因此考虑平方后求其最值.
【解】 (x)2=x2(6+2y2)=3·2x2≤3·=3×.当且仅当2x2=1+,即x=,y=时,等号成立.故x的最大值为.
展开后求最值
对于求多项式积的形式的最值,可以考虑展开后求其最值.
已知a>0,b>0且a+b=2,求的最小值.