1.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在唯一的实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.其中{a,b,c}叫做空间的一个基底.
2.两个向量的数量积(与平面向量基本相同)
(1)两向量的夹角:已知两个非零向量a,b,在空间中任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉.通常规定0≤〈a,b〉≤π.若〈a,b〉=,则称向量a,b互相垂直,记作a⊥b.
(2)两向量的数量积
两个非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.
(3)向量的数量积的性质
①a·e=|a|cos〈a,e〉(其中e为单位向量);
②a⊥b⇔a·b=0;
③|a|2=a·a=a2;
④|a·b|≤|a||b|.
(4)向量的数量积满足如下运算律
①(λa)·b=λ(a·b);
②a·b=b·a(交换律);
③a·(b+c)=a·b+a·c(分配律).