(2018·云南第一次统一检测)已知椭圆E的中心在原点,焦点F1,F2在y轴上,离心率等于,P是椭圆E上的点.以线段PF1为直径的圆经过F2,且9·=1.
(1)求椭圆E的方程;
(2)作直线l与椭圆E交于两个不同的点M,N.如果线段MN被直线2x+1=0平分,求直线l的倾斜角的取值范围.
【解】 (1)依题意,设椭圆E的方程为+=1(a>b>0),半焦距为c.
因为椭圆E的离心率等于,
所以c=a,b2=a2-c2=.
因为以线段PF1为直径的圆经过F2,
所以PF2⊥F1F2.
所以|PF2|=.
因为9·=1,
所以9||2==1.
由,得,
所以椭圆E的方程为+x2=1.