[典例] (1)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则此人第4天和第5天共走了( )
A.60里 B.48里
C.36里 D.24里
(2)(2019·北京东城区模拟)为了观看2022年的冬奥会,小明打算从2018年起,每年的1月1日到银行存入a元的一年期定期储蓄,若年利率为p,且保持不变,并约定每年到期存款本息均自动转为新一年的定期.到2022年的1月1日不再存钱而是将所有的存款和利息全部取出,则可取回________元.
[解析] (1)由题意知,此人每天走的里数构成公比为的等比数列{an},
设等比数列的首项为a1,则=378,
解得a1=192,所以a4=192×=24,a5=24×=12,
则a4+a5=24+12=36,即此人第4天和第5天共走了36里.
(2)2022年1月1日可取出钱的总数为
a(1+p)4+a(1+p)3+a(1+p)2+a(1+p)
=a·
=[(1+p)5-(1+p)]
=[(1+p)5-1-p].
[答案] (1)C (2)[(1+p)5-1-p]