用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 教案 >> 数学教案
高中数学编辑
(新人教A版)2020版高考数学一轮复习第6章不等式推理与证明第5节直接证明与间接证明数学归纳法教学案理(解析版)
下载扣金币方式下载扣金币方式
需消耗0金币 立即下载
0个贡献点 立即下载
0个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别教案
    资源子类复习教案
  • 教材版本人教A版(现行教材)
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小400 K
    上传用户majiawen
  • 更新时间2019/7/22 17:13:12
    下载统计今日0 总计16
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
 [考纲传真] 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题.
1.直接证明
(1)综合法
定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.
(2)分析法
定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止的证明方法.
2.间接证明——反证法
一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.
3.数学归纳法
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)归纳奠基:证明当n取第一个值n0(n0∈N*)时命题成立;
(2)归纳递推:假设nk(kn0k∈N*)时命题成立,证明当nk+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.
[常用结论] 利用归纳假设的技巧
在推证nk+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握nknk+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.
[基础自测]
  • 暂时没有相关评论
精品专题

请先登录网站关闭

  忘记密码  新用户注册