[命题解读] 立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模式,即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算,考查的热点是平行与垂直的证明、二面角的计算,平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查.
空间的平行与垂直及空间角的计算
空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.
【例1】 (2017·全国卷Ⅱ)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.
(1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD的夹角为45°,求二面角MABD的余弦值.
[解] (1)证明:如图,取PA的中点F,连接EF,BF.
因为E是PD的中点,
所以EF∥AD,EF=AD.
由∠BAD=∠ABC=90°,得BC∥AD.
又BC=AD,所以EF綊BC,
四边形BCEF是平行四边形,所以CE∥BF.
又BF平面PAB,CE平面PAB,
故CE∥平面PAB.