[考纲传真] 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景.3.理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,,的指数函数的图像.4.体会指数函数是一类重要的函数模型.
1.有理指数幂
(1)分数指数幂
①正分数指数幂:a=(a>0,m,n∈N*,且n>1);
②负分数指数幂:a==(a>0,m,n∈N*,且n>1);
③0的正分数指数幂等于0,0的负分数指数幂没有意义.
(2)有理数指数幂的运算性质
①ar·as=ar+s(a>0,r,s∈Q);
②(ar)s=ars(a>0,r,s∈Q);
③(ab)r=arbr(a>0,b>0,r∈Q).
2.指数函数的图像与性质