[考纲传真] 1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.会利用导数解决某些实际问题(生活中的优化问题).
1.导函数的符号和函数的单调性的关系
(1)如果在某个区间内,函数y=f(x)的导数f′(x)≥0,则在这个区间上,函数y=f(x)是增加的;
(2)如果在某个区间内,函数y=f(x)的导数f′(x)≤0,则在这个区间上,函数y=f(x)是减少的.
2.函数的极值与导数
(1)函数的极大值点和极大值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于x0点的函数值,称点x0为函数y=f(x)的极大值点.其函数值f(x0)为函数的极大值.
(2)函数的极小值点和极小值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.
(3)极值和极值点:极大值与极小值统称为极值,极大值点与极小值点统称为极值点.
(4)求可导函数极值的步骤:
①求f′(x).
②求方程f′(x)=0的根.
③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.
3.函数的最值与导数
(1)最大值点:函数y=f(x)在区间[a,b]上的最大值点x0指的是:函数在这个区间上所有点的函数值都不超过f(x0).函数的最小值点也有类似的意义.