1.定积分的概念与几何意义
(1)定积分的定义
如果函数f(x)在区间[a,b]上连续,用分点将区间[a,b]等分成n个小区间,在每个小区间上任取一点δi(i=1,2,…,n),作和式s′=f(δ1)Δx1+f(δ2)Δx2+…+f(δi)Δxi+…+f(δn)Δxn.当每个小区间的长度Δx趋于0时,s′的值趋于一个常数A.我们称常数A叫作函数f(x)在区间[a,b]上的定积分,记作f(x)dx,即f(x)dx=A.
在f(x)dx中,a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式.
(2)定积分的几何意义
图形
|
阴影部分面积
|
S=f(x)dx
|
S=-f(x)dx
|
S=f(x)dx-f(x)dx
|
S=f(x)dx-g(x)dx
=[f(x)-g(x)]dx
|