专题突破 带电粒子在复合场中的运动
突破一 带电粒子在组合场中的运动
1.组合场:电场与磁场各位于一定的区域内,并不重叠,电场、磁场交替出现。
2.分析思路
(1)划分过程:将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理。
(2)找关键点:确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键。
(3)画运动轨迹:根据受力分析和运动分析,大致画出粒子的运动轨迹图,有利于形象、直观地解决问题。
3.组合场中的两种典型偏转
【例1】 (2018·全国卷Ⅰ,25)如图1,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核H和一个氘核H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。已知H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。H的质量为m,电荷量为q。不计重力。求
图1
(1)H第一次进入磁场的位置到原点O的距离;
(2)磁场的磁感应强度大小;
(3)H第一次离开磁场的位置到原点O的距离。
解析 (1)H在电场中做类平抛运动,在磁场中做圆周运动,运动轨迹如图所示。设H在电场中的加速度大小为a1,初速度大小为v1,它在电场中的运动时间为t1,第一次进入磁场的位置到原点O的距离为s1。由运动学公式有
s1=v1t1 ①
h=a1t ②
由题给条件,H进入磁场时速度的方向与x轴正方向夹角θ1=60°。H进入磁场时速度的y分量的大小为
a1t1=v1tan θ1 ③
联立以上各式得
s1=h ④
(2)H在电场中运动时,由牛顿第二定律有
qE=ma1 ⑤
设H进入磁场时速度的大小为v1′,由速度合成法则有
v1′= ⑥
设磁感应强度大小为B,H在磁场中运动的圆轨道半径为R1,由洛伦兹力公式和牛顿第二定律有
qv1′B= ⑦
由几何关系得
s1=2R1sin θ1 ⑧
联立以上各式得
B= ⑨
(3)设H在电场中沿x轴正方向射出的速度大小为v2,在电场中的加速度大小为a2,由题给条件得
(2m)v=mv ⑩
由牛顿第二定律有
qE=2ma2
设H第一次射入磁场时的速度大小为v2′,速度的方向与x轴正方向夹角为θ2,入射点到原点的距离为s2,在电场中运动的时间为t2。由运动学公式有
s2=v2t2
h=a2t
v2′=
sin θ2=
联立以上各式得
s2=s1,θ2=θ1,v2′=v1′
设H在磁场中做圆周运动的半径为R2,由⑦式及粒子在匀强磁场中做圆周运动的半径公式得
R2==R1
所以出射点在原点左侧。设H进入磁场的入射点到第一次离开磁场的出射点的距离为s2′,由几何关系有
s2′=2R2sin θ2
联立④⑧式得,H第一次离开磁场时的位置到原点O的距离为
s2′-s2=(-1)h
答案 (1)h (2) (3)(-1)h