1.双曲线的定义
把平面内与两个定点F1,F2距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
思考:(1)双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?
(2)双曲线的定义中,F1、F2分别为双曲线的左、右焦点,若|MF1|-|MF2|=2a(常数),且2a<|F1F2|,则点M的轨迹是什么?
[提示] (1)当距离之差的绝对值等于|F1F2|时,动点的轨迹是两条射线,端点分别是F1,F2,当距离之差的绝对值大于|F1F2|时,动点的轨迹不存在.
(2)点M在双曲线的右支上.
2.双曲线的标准方程
|
焦点在x轴上
|
焦点在y轴上
|
标准方程
|
-=1(a>0,b>0)
|
-=1(a>0,b>0)
|
焦点
|
F1(-c,0),F2(c,0)
|
F1(0,-c),F2(0,c)
|
a,b,c的关系
|
c2=a2+b2
|
1.动点P到点M(1,0)的距离与点N(3,0)的距离之差为2,则点P的轨迹是( )
A.双曲线 B.双曲线的一支
C.两条射线 D.一条射线
D [由已知|PM|-|PN|=2=|MN|,所以点P的轨迹是一条以N为端点的