1.演绎推理
(1)含义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.
(2)特点:演绎推理是由一般到特殊的推理.
2.“三段论”
|
一般模式
|
常用格式
|
大前提
|
已知的一般原理
|
M是P
|
小前提
|
所研究的特殊情况
|
S是M
|
结论
|
根据一般原理,对特殊情况做出的判断
|
S是P
|
思考:如何分清大前提、小前提和结论?
[提示] 在演绎推理中,大前提描述的是一般原理,小前提描述的是大前提里的特殊情况,结论是根据一般原理对特殊情况作出的判断,这与平时我们解答问题中的思考是一样的,即先指出一般情况,从中取出一个特例,特例也具有一般意义.例如,平行四边形对角线互相平分,这是一般情况;矩形是平行四边形,这是特例;矩形对角线互相平分,这是特例具有一般意义.
1.“四边形ABCD是矩形,所以四边形ABCD的对角线相等”,补充该推理的大前提是( )
A.正方形的对角线相等
B.矩形的对角线相等
C.等腰梯形的对角线相等