1.数学归纳法的定义
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)归纳奠基:证明当n取第一个值n0(n0∈N*)时命题成立;
(2)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.
思考:数学归纳法的第一步n0的初始值是否一定为1?
[提示] 不一定.如证明n边形的内角和为(n-2)·180°,第一个值n0=3.
2.数学归纳法的框图表示
1.下面四个判断中,正确的是( )
A.式子1+k+k2+…+kn(n∈N*)中,当n=1时,式子的值为1
B.式子1+k+k2+…+kn-1(n∈N*)中,当n=1时,式子的值为1+k
C.式子1+++…+(n∈N*)中,当n=1时,式子的值为1++
D.设f(n)=++…+(n∈N*),则f(k+1)=f(k)+++