最新课程标准:(1)通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系.(2)通过对典型数学命题的梳理,理解充分条件的意义,理解判定定理与充分条件的关系.(3)通过对典型数学命题的梳理,理解充要条件的意义,理解数学定义与充要条件的关系.
知识点一 充分条件与必要条件
一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可以推出q,记作p⇒q,并且说,p是q的充分条件(sufficient condition),q是p的必要条件(necessary condition).
如果“若p,则q”为假命题,那么由条件p不能推出结论q,记作p q.此时,我们就说p不是q的充分条件,q不是p的必要条件.
知识点二 充要条件
如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,就记作p⇔q.此时,p既是q的充分条件,也是q的必要条件,我们说p是q的充分必要条件,简称为充要条件(sufficient and necessary condition).显然,如果p是q的充要条