1.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( )
x
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
y
|
15
|
17
|
19
|
21
|
23
|
25
|
27
|
A.一次函数模型 B.二次函数模型
C.指数函数模型 D.对数函数模型
A [自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型.故选A.]
2.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到( )
A.300只 B.400只
C.600只 D.700只
A [将x=1,y=100代入y=alog2(x+1)得,100=alog2(1+1),解得a=100.所以x=7时,y=100log2(7+1)=300.]
3.据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是( )
A.y=0.3x+800(0≤x≤2 000)
B.y=0.3x+1 600(0≤x≤2 000)
C.y=-0.3x+800(0≤x≤2 000)
D.y=-0.3x+1 600(0≤x≤2 000)