排列、组合与二项式定理
[巩固层·知识整合]
[提升层·题型探究]
|
两个计数原理的应用
|
【例1】 (1)方程+=1表示焦点在y轴上的椭圆,其中m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},那么这样的椭圆的个数是________.
(2)某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?
(1)20 [以m的值为标准分类,分五类:
第一类:m=1时,使n>m,n有6种选择;
第二类:m=2时,使n>m,n有5种选择;
第三类:n=3时,使n>m,n有4种选择;
第四类:n=4时,使n>m,n有3种选择;
第五类:n=5时,使n>m,n有2种选择;
所以共有6+5+4+3+2=20种方法.]
(2)[解] 用1,2,3,4,5,6表示广告的播放顺序,则完成这件事有三类方法.
第一类:宣传广告与公益广告的播放顺序是2,4,6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式;
第二类:宣传广告与公益广告的播放顺序是1,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.
第三类:宣传广告与公益广告的播放顺序是1,3,6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.
(变条件)若本例(1)的条件“焦点在y轴上”改为“焦点在x轴上”,试求满足条件的椭圆的个数.
[解] 因为方程表示焦点在x轴上的椭圆,则m>n>0,
以m的取值进行分类.
当m=1时,n值不存在;
当m=2时,n可取1,只有1种选择;
当m=3时,n可取1,2,有2种选择;
当m=4时,n可取1,2,3,有3种选择;
当m=5时,n可取1,2,3,4,有4种选择;
由分类加法计数原理可知,符合条件的椭圆共有10个.
应用两个计数原理解决应用问题时主要考虑三方面的问题:(1)要做什么事;(2)如何去做这件事;(3)怎样才算把这件事完成了.并注意计数原则:分类用加法,分步用乘法.
1.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都参加)
(1)每人恰好参加一项,每项人数不限;
(2)每项限报一人,且每人至多参加一项;
(3)每项限报一人,但每人参加的项目不限.
[解] (1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).
(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).
(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).