10.2 事件的相互独立性
[目标] 1.理解相互独立事件的定义及意义;2.理解概率的乘法公式.
[重点] 掌握综合运用互斥事件的概率加法公式及独立事件的乘法公式解题.
[难点] 理解相互独立事件的定义及意义.
要点整合夯基础
知识点 事件的相互独立性
[填一填]
1.定义
对于任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则事件A与事件B相互独立,简称为独立.
2.性质
当事件A,B相互独立时,A与,与B,与也相互独立.
3.n个事件相互独立
对于n个事件A1,A2,…,An,如果其中任一个事件发生的概率不受其他事件是否发生的影响,则称n个事件A1,A2,…,An相互独立.
4.n个相互独立事件的概率公式
如果事件A1,A2,…,An相互独立,那么这n个事件都发生的概率,等于每个事件发生的概率的积,即P(A1∩A2∩…∩An)=P(A1)×P(A2)×…×P(An),并且上式中任意多个事件Ai换成其对立事件后等式仍成立.
[答一答]
甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,有下列说法:①目标恰好被命中一次的概率为+;②目标恰好被命中两次的概率为×;③目标被命中的概率为×+×;④目标被命中的概率为1-×.
以上正确说法的序号是②④.
解析:①错误,目标恰好被命中一次的概率为×+×;②正确,目标恰好被命中两次的概率为×;目标被命中的概率为1-×,所以③错误,④正确.
典例讲练破题型
类型一 相互独立事件的判断
[例1] 判断下列各对事件是否是相互独立事件.
(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;
(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;
(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.
[分析] (1)利用独立性概念的直观解释进行判断.(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断.(3)利用事件的独立性定义式判断.
[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.
(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;若前一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.
(3)记A=“出现偶数点”,B=“出现3点或6点”,则A={2,4,6},B={3,6},AB={6},
∴P(A)==,P(B)==,P(A∩B)=.∴P(A∩B)=P(A)P(B),
∴事件A与B相互独立.