知识点 函数的单调性与其导数正负的关系
对于函数y=f(x):
(1)如果在某区间上f′(x)>0,那么f(x)为该区间上的函数;
(2)如果在某区间上f′(x)<0,那么f(x)为该区间上的函数.
对函数的单调性与其导数正负的关系的两点说明
(1)若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似);
(2)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为0.
在区间(a,b)内,若f′(x)>0,则f(x)在此区间上单调递增,反之也成立吗?
提示:不一定成立.比如y=x3在R上为增函数,但其在x=0处的导数等于零.也就是说f′(x)>0是y=f(x)在某个区间上单调递增的充分不必要条件.