1.如图所示,质量分别为m和2m的两物体P和Q叠放在倾角θ=30°的固定斜面上,Q与斜面间的动摩擦因数为μ,它们从静止开始沿斜面加速下滑,P恰好能与Q保持相对静止,设P与Q间的最大静摩擦力等于滑动摩擦力,则P与Q间的动摩擦因数为( )
A. B. C.μ D.2μ
【解析】选C。对P、Q整体,设加速度为a,根据牛顿第二定律有(m+2m)gsin30°-μ(m+2m)gcos30°=(m+2m)a,设P与Q之间的动摩擦因数为μ′,P恰好与Q保持相对静止,静摩擦力恰好达到最大,对P,由牛顿第二定律有mgsin30°-μ′mgcos30°=ma,联立解得μ′=μ,选项C正确。
2.如图所示,质量为M、长度为L的长木板静止在水平地面上,质量为m的小滑块(可视为质点)静止在长木板的最右端,长木板与地面之间、滑块与长木板之间、滑块与地面之间的动摩擦因数均为μ,现给长木板施加一恒力F,使滑块能从长木板上滑下来,下列说法正确的是( )
A.施加恒力的大小应满足F>μ(M+m)g
B.滑块在长木板上运动的时间和在地面上运动的时间相等
C.滑块在地面上运动的位移为L
D.增大施加的恒力F,滑块在地面上运动的时间不变
【解析】选B。滑块和长木板发生相对滑动,对滑块有μmg=ma,对长木板有F-μmg-μ(M+m)g>Ma,解得F>2μ(M+m)g,选项A错误;滑块在长木板上做匀加速直线运动,在地面上做匀减速直线运动,加速度大小相等,滑块从长木板上滑下时的速度等于滑块在地面上运动的初速度,所以运动的时间相等,选项B正确;从开始运动到滑块离开长木板的过程中,设长木板的位移为x1,滑块的位移为x2,则有x1-x2=L,滑块在地面上的位移也为x2,x2与L的关系不确定,所以滑块在地面上运动的位移不一定为L,选项C错误;增大施加的恒力F,滑块在长木板上运动的时间变短,在地面上运动的时间也变短,选项D错误。