4.(本题5分)甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为,则的值为()
A. B. C. D.
5.(本题5分)如图,矩形中,,N为边的中点,将沿翻折成(平面),M为线段的中点,则在翻折过程中,下列命题:①与平面垂直的直线必与直线垂直;②线段的长为;③异面直线与所成角的正切值为;④当三棱锥的体积最大时,三棱锥外接球表面积是 .正确的个数为( )
A.1个 B.2个 C.3个 D.4个
6.(本题5分)意大利数学家斐波那契(1175年—1250年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,…,该数列从第三项起,每一项都等于前两项之和,即故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为(设是不等式的正整数解,则的最小值为( )
A.10 B.9 C.8 D.7