1.已知等差数列{an}的前n项和为Sn,满足sin(a4﹣1)+2a4﹣5=0,sin(a8﹣1)+2a8+1=0,则下列结论正确的是( )
A.S11=11,a4<a8 B.S11=11,a4>a8
C.S11=22,a4<a8 D.S11=22,a4>a8
解:sin(a4﹣1)+2a4﹣5=0,sin(a8﹣1)+2a8+1=0,
∴sin(a4﹣1)+2(a4﹣1)﹣3=0,sin(1﹣a8)+2(1﹣a8)﹣3=0,
令f(x)=sinx+2x﹣3,可得f′(x)=cosx+2>0,
因此函数f(x)在R上单调递增.
又f(1)=sin1﹣1<0,f(2)=sin2+1>0,
因此函数f(x)在(1,2)内存在唯一零点.
∴a4﹣1=1﹣a8,1<a4﹣1<2,1<1﹣a8<2,
∴a4+a8=2,2<a4<3,﹣1<a8<0,
∴S11===11,a4>a8,
故选:B.