奇偶性
|
定 义
|
图象特点
|
偶函数
|
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数
|
关于y轴对称
|
奇函数
|
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数
|
关于原点对称
|
易误提醒
1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.
2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0).
3.分段函数奇偶性判定时,利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.
必记结论
1.函数奇偶性的几个重要结论:
(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.
(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
2.有关对称性的结论:
(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.
若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.
(2)若f(x)=f(2a-x),则函数f(x)关于x=a对称.
若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.