一、基础知识
定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。
定理1 若Sn表示{an}的前n项和,则S1=a1, 当n>1时,an=Sn-Sn-1.
定义2 等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.
定理2 等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=;3)an-am=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则an+am=ap+aq;5)对任意正整数p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.
定义3 等比数列,若对任意的正整数n,都有,则{an}称为等比数列,q叫做公比。
定理3 等比数列的性质:1)an=a1qn-1;2)前n项和Sn,当q 1时,Sn=;当q=1时,Sn=na1;3)如果a, b, c成等比数列,即b2=ac(b 0),则b叫做a, c的等比中项;4)若m+n=p+q,则aman=apaq。
定义4 极限,给定数列{an}和实数A,若对任意的 >0,存在M,对任意的n>M(n∈N),都有|an-A|<,则称A为n→+∞时数列{an}的极限,记作